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Abstract

Performing a fully non-perturbative analysis using the tools of numerical general relativity, we demonstrate that a period of slow
contraction is a “supersmoothing” cosmological phase that homogenizes, isotropizes and flattens the universe both classically and
quantum mechanically and can do so far more robustly and rapidly than had been realized in earlier studies.
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Introduction. The degree of homogeneity, isotropy and flat-
ness observed in the universe on large scales is generally viewed
as so striking that it calls for some kind of cosmological phase
to explain it. Typically, this very same phase is also supposed to
be the source of a nearly scale-invariant spectrum of quantum
fluctuations spanning length scales much larger than the Hubble
radius that, through one means or another, lead to a spectrum of
density perturbations.

To achieve these objectives, the phase must be a super-
smoother, meaning it must be a

(i) classical smoother (the relative contribution of small in-
homogeneities and anisotropies to the total energy density
must shrink according to classical cosmological evolution
equations);

(i) quantum smoother (homogenizes and isotropizes even
when all quantum fluctuations are included);

(iii) robust smoother (insensitive to initial conditions even
when they correspond to large, non-perturbative deviations
from a homogeneous and isotropic spacetime); and,

(iv) rapid smoother (sufficient smoothing is achieved well be-
fore the phase ends).

The goal of this paper is to show that a slow contraction phase
[1] (also known as an ekpyrotic contraction phase [2, 3, 4])
satisfies these four conditions. In fact, it is the only currently
known example of a supersmoothing cosmological phase.

Slow contraction is the mechanism commonly invoked in
bouncing and cyclic cosmologies [1, 5]. A standard example,
and one that will be used here, is described by a canonical scalar
field ¢ minimally-coupled to Einstein gravity with a negative
exponential potential

V(g) = —Voe V¥ = —y e M, (1)
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where Vy > 0 and M~' = V2¢ > 1. (Here and throughout units
in which the reduced Planck mass is set equal to one are used.)

Slow contraction is an attractor scaling solution in which
the scalar field homogeneously evolves down the potential as
&() = V2/eln|t] and the scale factor decreases as a(f) o |f]'/*
[6]. In this limit, the parameter & characterizes the equation of
state; more exactly, € = (3/2)(1 + p/o) where p is the pressure
and o is the energy density associated with the scalar field. (The
contributions of matter, radiation, gradient energy, and all other
forms of energy are negligible during the attractor phase.) The
slow contraction phase is followed by a classical (non-singular)
bounce and reheating (e.g., decay of the scalar field energy) to
a hot expanding phase with all the large-scale properties of the
universe already set as needed to explain cosmological obser-
vations.

Appealing features of bouncing cosmologies of this type are
that they are geodesically complete; resolve the cosmic sin-
gularity problem; avoid quantum runaway effects that lead to
a multiverse of outcomes; and can generate a nearly scale-
invariant spectrum of nearly gaussian density perturbations
without producing a corresponding spectrum of primary tensor
perturbations (in accord with current observations) [1]. In ad-
dition, recently proposed self-similar cyclic versions [5] avoid
the Tolman entropy problem of earlier cyclic cosmologies; en-
able information to pass smoothly across each bounce; predict
the instability of the current vacuum; and assign dark energy
a new role as the critical component shaping the overall cyclic
history of the universe. However, all of these features rely on
slow contraction being a supersmoothing phase.

We begin by reviewing the already-established case that slow
contraction is (i) a classical and (ii) a quantum smoother. These
conditions can be verified using perturbative analyses around
homogeneous spacetimes. We then turn to new results based
on fully non-perturbative calculations utilizing the tools of nu-
merical general relativity that establish (iii) the robust insensi-
tivity to initial conditions and (iv) the rapidity with which slow
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contraction smooths the universe.

This investigation builds on early work by Garfinkle et al.
[7] that adapted numerical relativity methods to study the ro-
bustness of slow contraction as a classical smoother beginning
from highly non-linear, non-perturbative deviations from ho-
mogeneity and isotropy. Based on case studies, the Garfinkle
et al. results suggested that, generically, smoothing never com-
pletes. Rather, slow contraction suffices to make most of the
volume homogeneous and isotropic, but there always remains a
small regime that is inhomogeneous and anisotropic.

Here we demonstrate that the case studies of Ref. [7] were
anomalous in that they inadvertently began with cosmologi-
cally implausible initial conditions and limited values of €. In
our study using still highly non-perturbative but now physically
plausible initial conditions, we find that slow contraction for
sufficiently large & generically results in an entirely smoothed
universe and no remnants of inhomogeneity and anisotropy. We
further show that, for somewhat larger values of &, the smooth-
ing completes rapidly after only a tiny amount of contraction,
as required to generate a sufficiently broadband spectrum of
nearly scale-invariant density perturbations to explain the tem-
perature variations in the cosmic microwave background. In
other words, slow contraction is a significantly more effective
and robust smoothing mechanism than suggested by the earlier
study.

(i) Classical smoother. We define a phase as a ‘classical
smoother’ if the dynamical attractor solution is a flat, homo-
geneous, and isotropic universe presuming initial conditions
that can be described as small perturbations about a Friedmann-
Robertson-Walker (FRW) spacetime and the generalized Fried-
mann equation,
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where H = a/a is the Hubble parameter; dot denotes differen-
tiation with respect to the physical time coordinate #; the scale
factor a(r) is normalized so that a(fg) = 1 att = 1y; p? represents
the energy density for component i at ¢ = fo; and i € {m,r, ¢}
refers to the densities of matter, radiation and the scalar field
(kinetic plus potential energy density), respectively. The last
two terms correspond to the spatial curvature and anisotropy.
Note that the scalar field gradient energy density in this pertur-
bative limit scales as 1/a?, the same way as the spatial curva-
ture.

Slow contraction with & > 3 is a classical smoother because
the scalar field energy density pg /a*® increases faster than all
other terms as a(f) decreases. Analogously, inflationary expan-
sion [8, 9, 10] with & < 1 passes this test because the scalar field
energy density for this equation of state decreases slower than
all other terms as a(t) increases.

A reasonable objection to this test is that it assumes near ho-
mogeneity as an initial condition, the same condition that slow
contraction (or inflation) is supposed to explain. The test fur-
ther assumes that quantum fluctuations have a negligible effect
on the background evolution, which is inconsistent with the fact

that inflation is generally eternal [11, 12] due to large quantum
backreaction effects. That is why the next conditions must also
be satisfied for a cosmological phase to be considered as su-
persmoother mechanism capable of explaining the large-scale
properties of the universe.

(ii.) Quantum smoother. A litmus test for a ‘quantum smoother’
is that an initially homogeneous, flat, and anisotropic universe
should be stable to quantum fluctuations generated during the
smoothing phase.

A classical smoother is not necessarily a quantum smoother.
In an inflationary phase, for example, quantum fluctuations of
the inflaton generate growing mode curvature fluctuations that
drive the universe away from homogeneity. (That there are
growing modes traces back in the Mukhanov-Sasaki perturba-
tion equation [13, 14, 15] to the fact that a” /a > O for an ex-
panding phase with £ < 1, where prime represents d/dt and 1
is the conformal time.)

The standard approach in inflationary model-building is to
suppress the unstable growth for a range of inflaton field val-
ues (corresponding to the last 60 e-folds of inflation, say) by
setting the inflaton self-interaction strength to be exponentially
small [16, 17] and setting the initial field strength and kinetic
energy density to lie within a specific restricted range. This is
the source of the “fine-tuning” and “initial condition” problems
of inflation. However, there is generally no physical mechanism
that can restrain a quantum field like the inflaton from explor-
ing values and kinetic energy densities that lie far outside the
chosen restricted range, including a range of values sometimes
called the ‘self-reproduction’ regime. In regions of space where
the field lies in this regime, the quantum-induced perturbations
dominate over classical evolution [11, 12, 18] and excite grow-
ing mode curvature perturbations [19]. The result is a quantum
runaway effect in which quantum fluctuations superimposed on
quantum fluctuations transform a universe — even if it is per-
fectly homogeneous and isotropic universe initially — into a
spacetime with arbitrary and unpredictable deviations from ho-
mogeneity and isotropy. By definition, this means that inflation
fails the litmus test for a quantum smoother, even though it is a
classical smoother.

Failing this test is critical. It means that, in a fundamen-
tal sense, inflation cannot explain the homogeneity (isotropy or
spatial flatness) of the universe. While it is possible that some
regions of spacetime are smooth, they are not generic.

In contrast, the curvature modes decay during slow contrac-
tion; e.g., the sign of a”’/a in the Mukhanov-Sasaki equation
[13, 14, 15] is negative during a contracting phase with € > 2.
Consequently, homogeneity, isotropy and spatial flatness are
preserved even when quantum fluctuations are included. Slow
contraction therefore passes the litmus test, meaning that it can
actually explain the observed large-scale properties of the uni-
verse. At present, slow contraction is the only known example
of a cosmological phase that is both a quantum smoother and a
classical smoother.

(iii.) Robust smoother. A cosmological phase that classically
smooths only for small perturbations away from FRW does
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Figure 1: Four ¢ = const. snapshots of the normalized energy density in matter ,, (blue, solid line), curvature € (red, hashed line) and shear Q; (green, dotted line)
for 0 < x < 2 at several times during the evolution for two cases: (a) initial conditions as in Ref. [7] with Q¢ = 0 and f; sufficiently large that the initial scalar field
velocity in half the space is wrong-way — headed very rapidly up the steeply downward potential (Q < 0); and (b) the same case but with Qp = 1.5, sufficiently large
that the initial scalar field velocity is headed right-way (downwards) or very slowly wrong-way for all x. 9y is the number of e-folds of contraction in the Hubble
radius, |H|~!. Notably, smoothing is incomplete in case (a) even after iy = 150 e-folds of contraction as there remains an inhomogeneous region (near x = 37/2
in this example) where the scalar field velocity was initially headed rapidly in the wrong direction; but smoothing completes everywhere if the initial scalar field
velocity is nowhere headed rapidly in the wrong direction, even though the initial conditions are highly perturbed with respect to the attractor slow contraction FRW
solution, as illustrated in case (b). As in Ref. [7], both examples use a physically plausible value of M = 0.1 (in reduced Planck units), corresponding to & = 50.

not explain the observed homogeneity and isotropy because it
fails to smooth for generic initial conditions. Hence, a third
condition for supersmoothing is that the phase be a ‘robust’
smoother: homogeneity and isotropy should emerge even if the
initial conditions are non-perturbatively far away from FRW.
The wider the range of initial conditions that can be smoothed,
the more robust is the smoothing phase. As we shall see, this
imposes a somewhat more stringent constraint on the equation
of state £ during a contracting phase than required to be a clas-
sical smoother (¢ > 3) or quantum smoother (& > 2).

To analyze the robustness of slow contraction to a wide
range of initial conditions with non-perturbative deviations
from FRW, we solve the full 3+1 dimensional Einstein-scalar
field equations numerically beginning from large initial inho-
mogeneous spatial curvature, matter density and shear and track
their evolution for long times (i.e., up to several hundreds of e-
folds). As in Ref. [7], we restrict ourselves to deviations from
homogeneity along a single spatial direction so that the space-
times have two Killing fields, although with sufficiently gen-
eral initial data that the behavior approaching the singularity is
the same as with no restriction. The scheme is fully detailed
in Ref. [20]. (We have extended our numerical simulations to
cases where the inhomogeneities are along two dimensions that
will be presented elsewhere [21], but we have not observed any
qualitative differences in the result.)

We note that, at present, there is no analogous test of ro-
bustness for an expanding case, including inflation. Recent

work has used full numerical relativity simulations to explore
smoothing of large initial inhomogeneities in inflation [22, 23],
though these early studies have only considered initial data
where the scalar field perturbation has spatially uniform veloc-
ity which is set to zero. This is a rather special initial condition
that favors inflation and is arguably far from what might be ex-
pected as a generic pre-inflationary state.

A key feature of our scheme is to use scale-invariant (Hubble-
normalized) variables (denoted by bar). For example, we define
the scalar field time derivative

W=N"0¢ 3

where N' = N/O is the scale-invariant generalization of the
lapse N, and the time coordinate ¢ is given through

e =10, 4)

-3

with ® = |H~!|, so that surfaces of constant time are constant
mean curvature hypersurfaces. Note that, in the homogeneous
limit, the variables of our numerical scheme reduce to the well-
known dimensionless Friedmann variables, ; for component i,
representing the fractional contribution of component i (matter
density, curvature or anisotropy) to H? in the Friedmann equa-
tion, see e.g. [4]. Note that the matter contribution (€2,,), which
includes the sum of positive kinetic energy density and neg-
ative potential energy density, and the curvature contribution
(€2;) can be positive or negative.



We set the initial conditions by first picking a particular time
to. Then, for the geometry we must provide the spatial metric
as well as the extrinsic curvature of the #y-hypersurface. Not
all components of these tensors are freely specifiable, but must
satisfy the constraint equations of general relativity. (Notably,
the evolution equations propagate the constraints, i.e., ensure
that the constraints are satisfied at later times.) To this end, we
adapt the York method [24] commonly used in numerical rela-
tivity computations: We freely specify a conformally flat initial
metric and the vacuum contribution to the conformally rescaled
trace-free extrinsic curvature. This method enables us to freely
choose the initial field ¢(x, ty) and velocity distributions

W(x, t0) = ¥ 0(x, 10) Q(x, to), o)

as well as the divergence-free part of the initial shear contribu-
tion, which is the trace-free part of the extrinsic curvature

Zap (X, 10) = Y 0(x, 10)Zap (x, o). (©6)

The set of initial data is completed by solving the constraint
equations for the conformal factor y(x,fy) and the rest of
Zab(x, tO)'

Periodic boundary conditions with 0 < x < 27 with 0 and
2n identified are used; hence, functions x can be expressed as
sums of Fourier modes. We use the same divergence-free and
trace-free ansatz for Z,, as in Ref. [7].

A critical difference from Ref. [7] is the inclusion of a homo-
geneous term, Qy, in the initial conditions for Q,

Q(x, 19) = O (fi cos(mix + dy) + Qo), @)

where Qo, fi,m; and d; are constants. The test for robust-
ness entails highly non-linear initial conditions such that Ay =
fl/Qattr and AQ = |Q0 - Qattr|/Qattr are O(l)’ where Q(xv t) =
Qaur(t) is the homogeneous attractor solution.

Qo represents the average value of Q over the periodic box.
Including only the cosine perturbation term proportional to fi,
as was done in Ref. [7], means that, for a portion of the space,
the initial scalar field velocity is aimed up the steep potential
rather than down. Revisiting the analysis in Ref. [7], we find
that precisely the regions with the maximal “wrong-way” initial
velocity end up being trapped in inhomogeneous regions (see
Fig. 1a) where the scalar field changes on very small spatial
scales and behaves like a fluid with w = 1 (that is, as if there
were no potential) and where the dynamical behavior is similar
to chaotic mixmaster vacuum solutions. (Note that our sign
convention is that positive Q corresponds to rolling the right
way, i.e., downhill, and negative Q corresponds to the wrong-
way.)

In the context of bouncing cosmology, though, the conditions
in which the scalar field is initially rolling rapidly up a steeply
downward potential at the beginning of the contracting phase
are quite extreme and, in some contexts, physically nonsensi-
cal. For example, in a cyclic cosmology, the transition from a
slowly accelerated expansion phase (like the current dark en-
ergy dominated phase) to a slowly contracting phase occurs
only if the scalar field first rolls down the potential (right-way)

Figure 2: The state space orbit for a worldline at x = 3x/2, a point in the
inhomogeneous region for the case with Qp = 0, as shown in Fig. la (blue,
dotted); and then superposed the space orbit for the same point the case with
Qo > 0 shown in Fig. 1b (red, solid). The center of the circle corresponds to
an isotropic FRW universe. The first orbit (blue, dotted) corresponding to an
inhomogeneous region never reaches the center, whereas the second example
(red, solid) corresponding to a smoothed region does reach the center.

sufficiently far such that the potential energy density changes
from slightly positive to sufficiently negative. In other words,
rolling down the steep potential is a prerequisite for contraction
to begin and, therefore, the right-way condition is automatically
satisfied. The study in Ref. [7] did not consider this physical re-
quirement, and, as illustrated by Fig. 1b, this is the only reason
why the inhomogeneous region formed during slow contrac-
tion (as shown in Fig. 1a). For the case illustrated in Fig. 1b,
Qo has been set to a sufficiently positive value that the initial
scalar field velocity is not rapidly uphill (negative) for any ux,
as expected physically, and the evolution converges to a smooth
solution despite the fact that the initial conditions are highly
non-perturbative in the sense that Ay and Ap = O(1), the same
as in Ref. [7].

Fig. 2 shows the state space orbits associated with Figs. la
and 1b evaluated at the same value of x = 37/2 projected onto
the (Z,,X_) plane, where

i_,_ = %(211 + 222), I = 2+6<i“ - i22)- (8)

The point x = 37/2 lies in the inhomogeneous region of Fig. 1a.
The orbits begin near the outer (Kasner) circle and travel in-
ward. They show that, for the case in Fig. 1a, the orbit never
converges to the center (corresponding to FRW), signifying
that the mixmaster-like reflections in the inhomogeneous region
never isotropize. This is to be contrasted with the orbit shown
for the case in Fig. 2b tracking the same point x = 37/2 which
isotropizes and converges to the center of the plot.

The critical value of Qg required to have “complete smooth-
ing” (smoothing for all x) depends on € and Ay = fi/Qqs,. The
curves in Fig. 3 show the critical Qy as a function of & for three
different values of Ay for cases in which the initial Z,;, distribu-
tion is homogeneous. Depending on Ay, complete smoothing
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Figure 3: The three solid curves show the minimal value of Qp required for
complete smoothing and convergence to the attractor solution Q(x,t) = Quur
(bold dashed curve) as a function of &, where Ay = f1/Quur measures the spa-
tial inhomogeneity of the initial velocity distribution. (The initial distribution
of Z, is homogeneous.) The solid curve marked Ay = 0 corresponds to a
strictly homogeneous initial condition and the upper solid curves correspond to
increasingly inhomogeneous initial velocity distributions.

and convergence to the attractor solution Q(x,#) = Qg (t) oc-
curs for any value of Qp on or above the corresponding curve.
Note that there is a significant gap between these curves and the
curve corresponding to the attractor solution, Q(x, 1) = Quur(?),
indicating that the initial velocity may be quite far from the
eventual smooth solution; this is a sign of robustness.

The larger the value of € is, the greater the robustness is.
For example, for the case of a homogeneous initial velocity
distribution (the curve marked Ay = 0), complete smoothing
and convergence to the attractor solution occurs for & 2 13
(or M~' > 5.1) even if the scalar field begins at rest for all x
(Qo = 0). For cases with non-uniform initial velocity (Af # 0),
it suffices if Qg is positive enough that the initial scalar field
velocity is downhill for all x. As noted above, rolling downhill
is typically a prerequisite for contraction to begin (and abso-
lutely necessary for cyclic models) and so, in these scenarios,
this condition is automatically satisfied.

(iv.) Rapid smoother. A measure of smoothing power is how
rapidly a cosmological phase can transform a highly inhomo-
geneous and anisotropic patch into a nearly FRW universe like
the one we observe. The rapidity is critically important in cases
like bouncing cosmology or inflation where the same phase
is supposed to generate a nearly scale-invariant spectrum of
fluctuations on scales larger than the Hubble radius during the
smoothing period [4]. In these cases, the smoothing phase must
last long enough to first homogenize the background beginning
from highly non-perturbative initial conditions and, in addition,
last long enough to generate the requisite band of quantum fluc-
tuations on the smoothed background as needed to explain the
cosmic microwave background and galaxy formation.

The case of cyclic bouncing cosmology [5] is the most re-
strictive because the slow contraction phase is limited to a finite
period beginning when the Hubble radius is roughly the cur-

rent value |H;,eg|’1 = 0(10*® ¢cm) and ending when the Hubble
radius shrinks to a microscopic size |H,,4|~' = 01072 cm).
There follows a classical (non-singular) bounce to an expand-
ing phase accompanied by reheating. Note that |H,,4|~! is much
larger than the Planck length where quantum gravity effects are
non-negligible. This value of |H gl ™! corresponds to a reheat
temperature of 7 ~ 10'3 GeV. In total, the change in the Hub-
ble radius during the slow contraction phase is a factor of about
120 e-folds.

This range of 120 e-folds determines the maximum range of
wavelengths (Fourier modes) that exit the Hubble radius during
the slow contraction phase. During slow contraction, fluctua-
tions exit the Hubble radius because the Hubble radius shrinks
rapidly while the scale factor a(#) changes negligibly (see be-
low). Each mode can be labeled by wavenumber k/a = H,,;,
that depends on the value of the Hubble radius when the mode
exits the Hubble radius. Consequently, quantum fluctuations
with wavelengths spanning the roughly 120 e-folds between
k/a = |Hpeo|™" and k/a = |Henql™" exit the Hubble radius by
the time the bounce is reached.

After the bounce, |[H|™' expands in proportion to a*> during
the radiation-dominated phase and as ¢*? during the matter-
dominated phase. The scale factor a(f) grows by about 60
e-folds over this period. Hence, modes with with comoving
wavenumbers between k/a = |H,,4|~' and k/a = e%°|H, ™!
lie within the Hubble radius today. These are probed by obser-
vations of galaxy formation and the temperature fluctuations
of the cosmic microwave background radiation. In order to
agree with observations, these fluctuations should be the only
deviations from homogeneity and isotropy; that is, the initial
highly-nonlinear deviations from FRW at the beginning of slow
contraction must be smoothed well before these last 60 e-folds
of quantum fluctuations exit the Hubble radius. (The first 60
e-folds to exit the Hubble radius lie beyond the current Hub-
ble radius and are unconstrained by observations.) The rapidity
constraint, therefore, is that smooth contraction must be rapid
enough to smooth the universe well within the first 60 e-folds
of the contraction of |H|™!.

The rapidity depends on the rate of slow contraction which,
in turn, depends on the equation of state &. We have seen
that the minimal value required for a classical and quantum
smoother is € = 3. We have shown in Figs. 2 and 3 above
that, for M~' > 5.1 or & > 13, the smoothing is robust: the uni-
verse is completely smoothed for the entire range of physically
plausible initial conditions.

Now we want to consider how long the smoothing takes. For
4 < M~ <10, the smoothing is complete within the first 60 e-
folds or less, depending on how nonlinear the initial conditions
are. This barely meets the minimum criterion for rapidity. For
modestly greater values, M~! > 10 or & > 50, corresponding to
our example in Fig. 1b above, the smoothing is complete in less
than 10 e-folds, easily satisfying the rapid smoother condition.

Discussion. Explaining the observed large-scale properties of
the universe requires a mechanism that causes these properties
to emerge even from initial conditions that are very different
from the desired outcome. We have argued that supersmooth-



ing, as defined by the four criteria described above, is required
to achieve this goal. Then, using the tools of numerical relativ-
ity, we have shown that a slow contraction phase with £ > O(10)
satisfies these criteria, the only example of a supersmoother
phase currently known.

An additional notable property of the slow contraction phase
is that the scale factor a(f) hardly shrinks at all (by only
N, = Ina/ap.,, = Ny/e e-folds) compared to the Hubble ra-
dius (which shrinks by 9ty e-folds). For example, in the case
shown in Fig. 1b, a(?) shrinks by 9, = 2.2 e-folds during the
same period that the Hubble radius shrinks by 9ty ~ 150 e-
folds. In a cyclic bouncing model, this means that the distance
between black holes (or galaxies) existing at the end of an ex-
panding phase decreases by a negligible amount over the entire
contraction phase!

Consequently, there is no crunch of pre-existing black
holes, galaxies or other macroscopic objects as the bounce ap-
proaches. There is also no large increase in the density of ordi-
nary matter and radiation. Space remains classical and spread
out. What changes exponentially is the size of the Hubble ra-
dius and the energy density stored in the scalar field driving
slow contraction. This is a fundamental difference between
cyclic models based on slow contraction and classical non-
singular bounces versus all previous cyclic models dating back
to Friedmann and Tolman or early conceptions envisioned be-
fore the introduction of general relativity [5]. The entropy prob-
lem that plagued earlier renditions is not relevant here because
nearly all entropy from the previous cycles lies outside the Hub-
ble radius at the bounce and does not re-enter after the bounce.
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